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I INTRODUCTZON

1.1 Background

Newton observed that the atmosphere distorted the images he

observed while viewing through a telescope Currently new systems,

called adaptive optical systems, are under development to reduce

the degrading effects noted by Newton . A typical imaging adaptive

optical system is shown in figure 1-1. The wavefront sensor measures

the aberrations induced by the atmosphere and controls the wavefront

corrector in a manner to reduce these aberrations. Adaptive optical

systems are also under development for laser communications systems

which transmit through the atmosphere. One particular system of

interest is a ground-to-near space optical communications link.

Adaptive optics is required in such a system to maintain the gain

of the transmitting aperture to near its diffraction limited value.

A typical transmitting adaptive optical system is shown in figure 1-2.

The wavefront sensor measures the aberrations of an optical beacon

signal originating at the spaceborne receiver. The wavefront

corrector is adjusted to cancel these aberrations. These corrections

are then imposed on the transmitted laser wavefront before it is

propagated to the receiver. By reciprocity the transmitted signal

3
arrives at the receiver with nearly diffraction limited parameters
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1.2 Prnblem Statement

A fundamental problem of both imaging and transmitting

adaptive optical systems is that the degradation imposed by the

atmosphere is a function of the propagation path. This concept is

demonstrated in figure 1-3 in a highly exaggerated scale. The

aberrations on paths 1, 2, and 3 would be nearly identical

(isoplanatic)4 , whereas the aberrations on paths 4 and 5 would

be different (anisoplanatic). If an imaging system views an object

wh'ich is large enough so that wavefronts from different portions

of the object suffer different aberrations, system performance will

be reduced. For a communications system transmitting to a moving

receiver, time delays can cause the reference and transmitted beams

to travel different paths and thus undergo different aberrations,

once again reducing system performance.

1.3 Research Objective

The objective of this paper is to use estimation theory to

reduce the degrading effects created by anisoplanatism in laser

communications systems. As will be shown in the following, the

application of estimation theory to this problem requires the

development of new estimation procedures, since the random processes

involved are not well behaved.

In the next chapter we develop the required mathematical concepts

and formalize the problem statement.

4

.- . . -7



UL

LU zQ
(A ID 4n

C2

0

CIO,

41%4

U.'.
C-.

C-3

CD,

C~4

p-

5

AM,1-



II STRUCTURE FUNCTIONS AND THE ANISOPLANATIC PROBLEM

2.1 Description of Random Processes

In the study of real physical systems the analyses can

usually be greatly simplified if the processes which describe the

system can assumed to be stationary in the wide sense (i.e., second

order statistics are not a function of absolute time). However,

for many physical systems of interest the assumption of wide sense

stationarity cannot be used since parameters of these systenm have

mean values which tend to be a function of absolute time.

Meteorological processes such as wind speed, temperature, and

pressure are examples of processes which tend to have mean values

which are a function of absolute time. Since such processes are

non-stationary, they are nonergodic. Therefore, time averages cannot

be used in place of ensemble averages. However, since time averages

are all that are available, attempts are made to use the time averages

as ensemble averages to implement the powerful statistical analysis

procedures which have been developed over the last several hundred

years. When attempting to use the time averages, it is difficult

to assess which fluctuations are associated with first order

statistics and which are associated with higher order statistics.

For example, meteorological parameters such as wind speed, temperature,

and pressure at a given location have variations with-periods of less

than 0.01 seconds and greater than days, years, and probably much

6



longer. Thus when using the time averages of these processes it is

difficult to determine the correlation function. Large variances

can result when time averages are used to approximate ensemble

averages for such processes. These large variances can lead to

mathematical problems when analyzing such processes.

To avoid these types of problems a statistical description,

called the structure function, related to the difference between the

value of the process at two different times, has been developed.

The differencing process tends to suppress slow fluctuations

(i.e., those which have a period longer than the differencing time)

and to suppress problems associated with large variances. Time

averages of the difference function are thus more representative of

ensemble averages than are time averages of the basic process.

In this paper we will extend the use of the structure function

to develop an optimum linear estimate of the future value of

non-stationary random processes. This estimation procedure will then

be applied to the problem of interest.

2.2 Historical Note

The concept of structure functions was first introduced by

Kolmogorov 5. In his work Kolmogorov used the structure function to

describe the random nature of meteorological parameters. Since its

introduction the structure function has been widely used in the

literature to describe optical propagation through turbulence6.

7
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Fried introduced the hyperstructure function, which is similar

to the structure function, and is useful for describing processes

which are a function of more than one variable7.

2.3 Structure Function Formulation

The temporal structure function of the random process

f(t), denoted as Df(tlt 2), is defined as follows:

Df(t1 st2 ) A <[f(tl ) - f(t2)]2> (2.1)

where the < > brackets indicate an ensemble average.

If f(t) is non-stationary, due to non-stationarity of the

mean, the structure function can be expressed in terms of

(t1-t2 ) as long as the difference function, h, defined as:

h(tl,t2) = f(t1 ) - f(t2) (2.2)

is stationary in the mean.

We can simply show that h will be stationary in the mean

provided that the mean value of the process f(t) is a linear

function of t.

Let: <f(t)> a m + at (2.3)

Then: <h(t 1,t2 )> a m + at, - (m + at2 ) (2.4)

= a(t -t2 ) (2.5)

8
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While the assumption that the mean value of a process is linear

might not be completely accurate, it can be applied when the

assumption of stationarity clearly cannot be used. Both theoretical

and empirical data demonstrate that, for the processes that will be

of interest in this paper, assuming that the structure function is

not a function of absolute time is better than assuming that the

6
process is stationary

We note that Df can be written as:

Df(tlt 2) = Cf(tlt I) - 2Cf(tl9t 2) + Cf(t 2,t2 ) (2.6)

where: Cf(t1lt2 ) is the correlation function of the process f.

For processes with large variances direct measurement of the

structure function avoids the procedure of differencing large

quantities, which can lead to mathematical difficulties.

The spatial structure function formulation follows in a straight

forward manner from the temporal structure function. The spatial

structure function of the process f( ), denoted as Df(XlX 2), is

defined as:
- -*

D (<rf() x (2.7)f1'2 ) :<[f(-l ) " f(x 2 )] 2 >

The structure function depends only on the distance between

and 2 (i.e. -"21) if the difference function h(xlK 2)

is homogenous and isotropic. As will be shown later, this assumption

is realistic for the processes of interest in this paper.

(9

'-4



The hyperstructure function, F, of the random process

f(',I), where ' and ' are two arbitrary variables (e.g., time,

linear dimension, angle) is defined as:

Ff '2 l'2 ) 4 [(l'1 - f(2'Y1 I]

X 2) f(2 ) > (2.8)

Note that for the case where ;l = ;2 the hyperstructure

function reduces to the structure function. The purpose of the

differencing procedure in equation (2.8) is to reduce the dependence

of F on the absolute value of the variables .and -. Thus, at

least over a certain range of - 2 and i F can be written as:

2)= <[f(-;l'-)'I) - f("'l

x [f(l, 2 ) - f(Q 2 ,B2 ))> (2.9)

In the following sections a particular problem which can be

solved using the structure function and the hyperstructure function

approach will be described.

2.4 Turbulence Induced Phase Noise

As stated in the introduction, the problem of interest is a

ground-to-near space visible wavelength optical communications system.

10
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The electric field of the signal, in the transmitting aperture

plane, can be written as the real part of:

s(t ,) = Wa(Y)A(ty)exp{j[wt- + amYtyy

+ a(t ,y (2.10)

where: t' is time in the transmitting aperture;

is a vector denoting position in the transmitting

aperture plane;

W a(y) is a function which defines the transmitting

aperture;

apertre) {l inside the aperture
W a( c. (2.11)

0outside the aperture

Am(t', ) is the amplitude modulation applied to the

signal.

w is the temporal frequency of the electromagnetic

field.

(t-,") is the phase modulation applied to the signal;

and

fa(t ,y) is the phase imposed on the field by the

transmitting antenna.

For our problem of interest the amplitude modulation and the

phase modulation will be applied uniformly across the entire

transmitted field, thus A and 0m will have no y dependence.

m-

11



For conventional non-adaptive systems *a has no time dependence.

Equation (2.10) can thus be simiplified to:

s(t,y) - Wa(;)Am(t')exp{j(m(t') + aky] (2.12)

where the wt dependence is understood.

After the signal propagates through the cloud free atmosphere

the received field, r, can be written as:

r(t,;) = Wb(X)Am (t)Ap ()exp{j(p (') + fm(t)

+ b(tx) + y(t,*)]} (2.13)

where: t is time in the receiving aperture;

x is a vector denoting position within the receiving

aperture;

Wb(X) defines the size of the receiving aperture;

Cb(t,X) is the phase imposed on the field by the

receiving antenna;

A p() and p ( ) are the amplitude and phase effects,

respectively, which would result if the propagation

from the transmitting plane to the receiving plane

were in free space; and

y(t, ) is a complex random process which denotes the

degradation imposed on the signal as a result of the

field propagating through the turbulent atmosphere.

12



The terms Ap () and Cp(-) are well understood. They can be

calculated using the Huygens-Fresnel integral4 as follows:

u(t,*)_=f(jXr) - I (expjkr) (cosB) s(t,)dy; (2.14)

where: U(t, ) = Am(t)A p(.)expj[ p (-) + r t)]; (2.15)

r is the vector from y to x and r is [rI;

a is the angle between n, the normal to the y

plane, and r; and

k is the wave number =2/x.

We can separate both p (x) and .Ap () into two parts as

shown below:

p(-X =p = + M (2.16)

Ap(X) = Ap + Ap O) (2.17)

where: 0p and Ap are constants.

For most applications the size of the receiving aperture,
defined by is so that oI(x) and Al1 (-) do not have

deind y b(xp p
significant variations over the receiving aperture. Thus we can

rewrite equation (2.13) as follows:

r(t,- ) = Wb(X)A(t)exp{ir p ' m(t) + b(t,X)

+ y(t,)l} (2.18)

13



where: A(t) - Am(t)A p  (2.19)

We can write y(t,x) as follows:

y(t,x) = n (t,-) + jB(tx) (2.20)

where both 0n and B are Gaussian random processes. Both n

and B are noise-like terms which are the result of the field

propagating through the turbulent atmosphere where the index

of refraction, n, has a spatial dependence. It is well known

that the temperature fluctuations of air are the main contributor

8
to fluctuations in the refractive index at optical frequencies

Using equation (2.20) in equation (2.18) gives:

r(t,() = Wb(X)An(tX)A(t)exp{j[ p + Cm(t)

+ Ob(tx) + ¢ Ct, )I} (2.21)

where: An(t,-) = exp(-B(t,5)]. (2.22)

From equation (2.21) we see that the turbulent propagation

medium has induced both phase and amplitude noise on the received

field. For most laser communication systems the amplitude noise

does not significantly reduce system performance. The phase noise,

however, does seriously degrade system performance. Fried has shown

that the additive phase noise can be analyzed as limiting the

9effective transmitter aperture size . The effective limit is the

coherence length of the phase aberrations in the received field.

This phase coherence length is denoted as ro. The resolution

14



achievable when imaging through the atmosphere is also limited to

10
that corresponding to an aperture diameter of approximately r0

Measurements indicate that typical nighttime values of ro
11

are approximately 10 cm 1 . Using the standard definition of

theoretical (i.e., diffraction limited) antenna power gain 12 ,

GDL' we calculate:

GDL = (7rD/x) 2  (2.23)

as the gain of an aperture of diameter D at wavelength x.

If the effective aperture is limited to r0 then the effective

gain, Ge, is:

Ge = (r o/X) 2  (2.24)

The loss due to turbulence is thus:

-2
Loss in gain = (r /D) (2.25)

For a 2 meter aperture and an ro = .1 m the loss is:

Loss in gain = 400 (2.26)

= 26 dB (2.27)

To recover such losses adaptive optical systems have been proposed.

2.5 Adaptive Optical Compensation

Adaptive optical systems adjust ob(t,x) to cancel the additive

phase noise, on (t, ). The required correction is determined by

measuring the phase difference between points in the receiving plane

rather than the absolute phase. Using equation (2.21) the phase

15



difference between two points in the receiving plane is:

(tl 0- ,(t, 2 ) = 0b(tXl) - Ob(t,X2)

+ (n(t,x 1 ) - On(tI2)] (2.28)

Both the absolute phases, p, and the phase modulation, *m' are

suppressed by the differencing operation. Since *p is not an

aberration, but is merely due to a time delay and since Om is a

desired signal which we don't wish to modify, setting:

b(Xl) - €b(02) = -n(tXI) - n(tX 2 )] (2.29)

will provide the desired compensation.

For a receiving adaptive optical system, as shown in figure 1-1,

the phase noise on the incoming field is measured and the negative

of the phase noise is added to the field before signal detection.

For transmitting adaptive optical systems, as shown in figure 1-2, the

phase noise on the field of a reference beam propagating from the

receiver to the transmitter is measured. The negative of the

measured phase noise is added to the outgoing field. Assuming that

the reference and the transmitted beams propagate through the same

turbulence, then by reciprocity the transmitted beam will arrive at

the receiver without any phase noise.

Transmitting adaptive optical systems are appropriate for a

ground-to-space communication link where the complexity of such

systems is acceptable at the ground transmitter, but would not be

in the satellite receiver.

16



2.6 The Anisoplanatic Problem

For a ground-to-space communication link in which the reference

beacon and the receiver are co-located the two way propagation time

between the receiver and transmitter causes the path followed by the

reference beam to differ from that of the transmitted beam as shown

in figure 2-1. The point ahead angle, e, between the propagation

paths of the reference beam and the transmitted beam is:

e = 2V/c (2.30)

where: V is the linear velocity of the satellite perpendicular

to the line of sight; and c is the speed of light.

Since, as discussed in the introduction, the phase distortion

imposed by the atmosphere is a function of the propagation path,

the phase noise imposed on the reference beam will be different than

the phase noise imposed on the outgoing transmitted beam. Thus if

the phase noise on the reference beam is used to determine the phase

compensation for the transmitted beam, an error is made. Such errors

are called anisoplanatic errors.

There are several sources of error in adaptive optical systems

such as spatial sampling errors in the wavefront sensor and the

wavefront corrector, photon error in measuring the aberrated wavefront,

time delay errors, amplitude scintillation errors, and anisoplanatic

13 14errors . New methods of implementing the adaptive optics correction

currently in the basic research stage, theoretically can reduce all of

17
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these errors to zero, for a system with a bright reference signal,

except for the error created by anisoplanatism. Thus anisoplanatic

errors currently place a fundamental limit, which is known to be

severe, on the performance of the type of adaptive optical

communications systems shown in figure 2-1.

To overcome the anisoplanatic errors, systems have been proposed

which use a beacon in front of the receiver as shown in figure 2-2.

If the angle between the beacon and the receiver, as viewed from the

ground, can be kept at the point ahead angle then the anisoplanatic

error can be reduced to zero. In practice, however, it is impossible

to keep the beacon to receiver spacing correct at all times. This is

especially true for the near earth orbiting satellites of interest

since the orbital parameters are constantly changing due to atmospheric

drag. The station keeping requirements (i.e., the allowable deviation

in the distance between the receiver and the beacon from its correct

value) are established during system design by specifying the maximum

allowable anisoplanatic error. As shown later these station keeping

requirements are extremely stringent. These severe station keeping

requirements greatly increase the cost and complexity of the beacon

and bring into question the feasibility of using a system as shown

in figure 2-2.

The purpose of this paper is to investigate methods for relaxing

these station keeping requirements by estimating the aberrations on

one path from observing the aberrations on other paths. Thus the

mathematical problem of interest is to estimate the value of a

19
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non-stationary random process (i.e., the phase difference between

two points in the aperture plane) at an unobserved point (i.e., the

point ahead angle) from observed data (i.e., phase difference data

at observed zenith angles). While solutions to the prediction

problem are well known for stationary processes for which the

correlation function is known, they must be modified for non-stationary

processes. We will use the structure function and the hyperstructure

function to develop an optimum linear estimate for non-stationary

random processes for which the correlation function is unknown.

21
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III SOLUTION OF THE PREDICTION PROBLEM USING THE HYPERSTRUCTURE FUNCTION

3.1 Standard Estimation Procedures

It is well known that the future value of certain random processes

15
can be predicted exactly, in the mean square error sense . The optimum

mean square error estimate ot f(t+at), denoted as f(t+At), of the

random process f(t) is found as follows:

f(t+At) =[f'n' (t) (At)n ]/n! (3.1)
n=o

where f {(t) is the nth derivative of f with respect to t.

However, the estimation procedure provided by equation 3.1 requires

that the process be stationary. We desire an estimation procedure for

non-stationary processes. In practice application of equation (3.1)

is difficult, even when the process is stationary, since small amounts

of noise can significantly alter the higher derivatives.

The Wiener-Hopf approach to solving the prediction problem is

16
developed as follows . Let f(t+At) be the estimate of f(t+at). The

estimate is given by:

f(t+it)Jf(S) h(t,B) ds (3.2)

where: f(B) is the observed data; and

h(t,a) is the impulse response of the optimum linear filter.
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The orthogonality principle 15 requires that the error in the estimate

be orthogonal to the observed data, i.e.,:

<(f(t+At)-f(t+At)] f(i)> * 0 (3.3)

for all O<t since f(o) is the observed data. Using equation (3.2)

in equation (3.3) gives:

<[f(t+At) -!(a) h(tB)dB] f(e)> = 0 e<t (3.4)

Taking the expectation gives:

Cf(t+At,-) -ff(oe) h(t,8) dB = 0 <t (3.5)

At this point in the development it is usually assumed that the

process is stationary. We digress to discuss the solution in that case.

If the process is stationary then equation (3.5)can be written as:

t

Cf(t+At-e) mfCf(o-e) h(t-o) do = 0 C<t (3.6)

Using the following change of variables:

' t- B (3.7)

in equation (3.6) gives:

Cf(t+At-e) -fCf(t--c) h(a) da = 0 C<t (3.8)
0
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Using another change of variables:

t - T" (3.9)

in equation (3.8) gives:

Cf (+At) - fCf(r-cl) h(a) da , 0 (3.10)
0

which is true for all >O. This is the standard form of the

Wiener-Hopf integral equation. Procedures have been developed for

16
solving this equation

From a practical point of view the Wiener-Hopf approach has two

drawbacks. First it requires complete knowledge of the correlation

function Cf(ti l t 2 ) for all times tI and t2. Complete specification

of Cf is not available for many practical problems. Secondly, standard

solutions are known only for the case where the process is stationary.

Trying to apply known procedures for solving equation (3.10) to solve

equation (3.5) would be tedious. Such a solution would obviously

require that the impulse response, h, be time varying.

To avoid the requirement of knowing Cf(til t2) for all times

tit 2 we can use an estimation procedure based on discrete time

samples of the observed data. The standard approach for the optimum

estimate in this case is developed as follows. We assume that we have

the observed data set {fiI where:

f = f(t ) (3.11)

24
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We represent the observed data as a vector f where:

"fl

f 2

* .(3.12 )

f
n

We wish to form an estimate of f(t+At) which we denote as

f(t+At). The optimum linear estimate is given by:

(3.13)

where: the vector multiplication is the standard inner product;

the vector a is chosen such that the orthogonality principle

is satisfied, i.e.,:

<[f(t+At) - f(t+At)] T > = (3.14)

Using equation (3.13) in equation (3.14) gives:

<[f(t+at) - 'a-I >1 (3.15)

Carrying out the multiplications and the expectation gives the matrix

equation.
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Solution of this equation determines the vector a which will provide

the optimum linear estimate. If the process is stationary equation

(3.16) can be written as follows:
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Both equations (3.16) and (3.17) require knowledge of the correlation

function. We also note that equations (3.16) and (3.17) involve the

difference of the variance and the correlation function of the process

for various times. Thus for processes with large variances,

equations (3.16) and (3.17) pose a mathematical stability problem,

since they involve the difference of large quantities in an attempt

to observe small quantities.

3.2 Optimum Linear Estimate for the Future Value of the Difference

Between Two Random Variables of a Process

For many practical cases of interest the value of a process at

some absolute time is not what is required. Many times the problem

can instead be formulated such that it is the difference between the

value of the random process at two different times that is of interest.

Formulation of the problem in such a manner allows use of the

hyperstructure function and the structure function, functions which

can be observed, to describe the process. We now develop the optimum

linear estimate for the future value of the difference between two

k" random variables of the same process.

We desire an estimate, h(t+At), of h(t+at) where:

h(t+At) = f(t) - f(t+At) (3.18)

For many processes the differencing procedure in equation (3.18)

will remove the non-stationary aspects of the process f(t), at least

for a certain range of at. For processes for which this is true,

such as meteorological processes 6 , we can use time averages to

approximate ensemble averages. 28



Obviously one approach to forming the desired estimate would be

to measure f(t) and to form an estimate of f(t+At) separately using

the procedures discussed in section 3.1. We develop another approach

which does not require the assumption of statlonarity or knowledge

of the correlation function of the process.

We will use the observed data set (hiI where:

hl(at) = f(t i )- f(t 1+At) (3.19)

We define the temporal hyperstructure function for a process, which

is a function of a single variable, as follows:

Ff(ti-tjAt) < <[hi(At)][hj(At)J> (3.20)

We note that for t. - t. the temporal hyperstructure function reduces

to the temporal structure function. We form a linear estimate of

h(t+At) as follows:

h(t+&t) ' a. (3.21)

and optimize the estimate by requiring that:

<[h(t+At)- ] > = (3.22)

Multiplying and taking the expectation gives:

29
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Comparing equations (3.23) and (3.17) we see that they are

identical except that in equation (3.23) the hyperstructure function,

F, and the structure function, D, have replaced the correlation

function, C. It is important to emphasize that F and 0 can be

determined through time domain averages since the differencing

procedure creates a process which is stationary, at least for some

values of At. Thus equation (3.23) can be solved since the

Ff(ti-tjAt) and Df(At) can be determined, whereas neither equation

(3.16) nor equation (3.17) can be solved since the Cf's cannot be

17determined through time domain averages . Also the problems

associated with large variances have been suppressed through the

use of the hyperstructure function since equation (3.23) involves

the difference of small quantities while attempting to observe

small quantities.

3.3 Optimum Linear Estimate for the Difference Between Two Random

Variables of a Process Which is a Function of Two Variables

The development in this section follows that in the previous

section very closely. Here the problem of interest is to predict the

future value of the difference between two random variables of a process

which is a function of both space and time.

We desire to form an estimate, g(p,t+At), of g(p,t+At) where:

g(p,t) = [f(l,t) f('2,t)] (3.24)

and p = jx1 - x21 (3.25)
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We note that implicit in the definition of equation (3.24) is the

assumption that the differencing procedure has removed any

non-homogeneous and non-isotropic characteristics of the process f(t).

thus making g a function of p and t only.

Obviously one approach to forming the desired estimate would be

to form an estimate of f(x1,t+At) and f(X 2 ,t+At) separately using the

procedures discussed in section 3.1. As before, we develop another

approach which does not require the assumption of stationarity or

knowledge of the correlation function of the process.

We will use the observed data set {gi(p)) where:

gi(p) 4 g(p,ti) (3.26)

Using equation (2.9) we note that:

<gi(p)g j (p)> = Ff(Pti-tj) (3.27)

Implicit in equation (3.27) is the assumption that the differencing

procedure has removed any non-stationary characteristics off.

We form a linear estimate of g(p,t+at) as follows:

g(pt+at) = g (3.28)

and optimize the estimate by requiring that:

<[g(p,t+&t) - a.g >g = (3.29)

Multiplying and taking the expectation gives:
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Comparing equations (3.30) and 3.17) we see that they are

identical except that in equation (3.30) the hyperstructure function,

F, and the structure function, D, have replaced the correlation

function, C. It is important to emphasize that F and D can be

determined through time domain averages since the differencing

procedure creates a process which is stationary, at least for some

values of p and at. Thus equation (3.30) can be solved since the

Ff(P.tjt-t) can be determined, whereas neither equation (3.16) nor

equation (3.17) can be solved since the Cf's cannot be determined

through time domain averages. Once again we note that the problems

associated with having a process with large variances are suppressed

in equation (3.3 ).
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IV APPLICATION OF THE OPTIMUM LINEAR ESTIMATE

TO THE ANISOPLANATIC PROBLEM

4.1 Optical Propagation Through Turbulence

A great deal of research has been conducted in the area of

optical propagation through the turbulent atmosphere. Numerous

books and articles have resulted from this research, such as the

pioneering work by Tatarski6 and the more recent work by Strohbehn
17

To make this paper relatively self-contained, we review the results

of others which will be used later in the paper.

The spatial structure function for the index of refraction,

Dn , is given by:

Dn(l I , 2
) = <[n(xl) - n('2)] 2> (4.1)

where: n( ) is the index of refraction at _, and;

4. 4n(x) =VeT)where e( ) is the dielectric constant at x.

It is known6 that under certain conditions D can be written as follows:

n (P) = C2  2/3 (4.2)n n

where: Cn 2 is called the index of refraction structure parameter, and;

p = x1 - x2, and; (4.3)

p = I'i (4.4)
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2
Cn thus provides a measure of the strength of turbulence. The range

over which equation (4.2) holds is called the Inertial sub-range

and is given by:

1 << p << L°  (4.5)

where 10 is called the inner scale of turbulence and L is called the

outer scale of turbulence. Physically 1 and L correspond to the
0 0

smallest and largest size elements, respectively, in the turbulent

field over which the index of refraction is constant. Turbulence

which is specified by equation (4.2) is called Kolmogorov turbulence.

Starting wit the assumption of Kolmogorov turbulence, the

spatial structure function of phase, D (p), for a plane wavefront

propagating through a turbulent medium is given by6

L

D (p) = 2.91 k2 5/3f C2 (v)dv (4.6)
4, n

0

where: k = 2;i'x, (4.7)

X is the wavelength of the optical field,

L is the path length,

v is the distance along the path from the receiver to the

transmitter, and

(0.033) (21/3) (2) (6/5) [r(1/ 6 )1[r(ll/6 )]-
1 '2.91 (4.8)

and r(y) is the well known Gamma function
18
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Equation (4.6) can be written as:

5/3

D (p) - A p (4.9)

L

where: A 2.91 k2 fC2(v)dv (4.10)
n

0

Fried 10 has defined a parameter r0 as follows:

r°  {2[(24/ 5 )r(6/ 5 )] 5 /6/A} 3/ 5  (4.11)

= (6.88/A)3/5  (4.12)

The physical significance of r0 as defined by equation (4.11) is that

r can be considered to be the diffraction limit of the turbulent medium

through which the optical wave is propagating. Using equation (4.12)

in equation (4.9) gives:

D b(p) = 6.88 (p/r0 ) 5/3 rad 2  (4.13)

We can find r from the parameters of the path by using equation (4.11)

in equation (4.10) to get:

L
ro = [0.423 k2 fC2(v)dv] "3/5  (4.14)

0

We note that the integral in equation (4.14) is unweighted, therefore,

r for a plane wave is not a function of where the turbulence is along

the propagation path. Thus, ro, is the same for both ground to space

and space to ground plane wave propagation.

37
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Finally, we note that C2 is most often known as a function of
n

altitude, h, above ground. We thus rewrite equation (4.14) for

ground to space plane wave propagation as:

r= [0.423 k2 ( sec *) fC 2n(h)dh]f 3/5  (4.15)

0

where: = zenith angle;

v = h/coso, and; (4.16)

the upper limit of integration is determined by the altitude

where atmospheric turbulence ends (i.e., Cn goes to zero),

which is approximately 20kmn9 .

If r0 is known, we can use equation (4.13) to determine the mean

square phase difference between points in the aperture plane, for a

given zenith angle.

4.2 Derivation of the Spatial-Angular Structure Function

Others have previously calculated the anisoplanatic error
20' 21

We follow a slightly different development which concisely states the

anisoplanatic error in terms of a single structure function.

We define the spatial-angular structure function, denoted as

H ¢( ,), as follows:

H,( 3 = <({*(X1 ',1) "-(2 )

- [(x,*2) - 0(52, 21 2> (4.17)

where: e *,-*2 (4.18)
38
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H ( , ) is the mean square phase difference between two points in

the aperture plane at two different zenith angles. Thus, H (,;)

quantifies the anisoplanatic error. Figures 4-la, b, and c illustrate

the nomenclature used in equation (4.17). As shown in figures 4-lb

and c, the phase difference between points X1. and x2 will in

general be different for different zenith angles due to atmospheric

distortion. This is what creates the anisoplanatic error.

Expanding the square in equation (4.17) gives:

2H (PO <W,(I I  j) - ,( 12&)

- 2{2[)(1l ) - 2 - (x2" 2)]

+ ' - 0( 2' 2)]2> (4.19)

Using equation (2.9) we can rewrite equation (4.19) as follows:

H , = 2[F (,i) - F (,?)] (4.20)

Fried22 found F (, ) to be given by:
L

F('p,') 8.16 k2 (47 2) " fdv C(v) f{[1exp(i".)J
0

-.11/3 4 +- 2c(4.v1)
/3[cos(a.ev) + cos(v/k) (4.21)

where: o is two dimensional spatial frequency:

a= ja;I

B = 1si;

39
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ILLUSTRATION OF ANISOPLANATIC PHASE ERROR

a. TWO TYPICAL POINTS IN THE APERTURE PLANE RECEIVING OPTICAL
SIGNALS FROM TWO TYPICAL ZENITH ANGLES

2

/APERTURE PLANE X2

b. OPTICAL PHASE AS A FUNCTION OF LOCATION IN THE APERTURE
PLANE FOR ZENITH ANGLE

XX, X2

c. OPTICAL PHASE AS A FUNCTION OF LOCATION IN THE APERTURE
PLANE'FOR ZENITH ANGLE O

X (XI 02. (X,2

Figure 4-1
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v is the distance along the propagatlcn path from receiver

to transmitter. and;

10w2[27r(4/3) sin(,/6) 1- a 8.16 (4.22)

Equation (4.21) is valid for the inertial sub-range as defined by

equation (4.5). Using equation (4.21) in equation (4.20) gives:

- 8.16 k2 (2w, 2 )'dv Cn(v) fd; 11 / 3 {([-exp(i,'.)J

1 -cos (03.v) 11 (4.23)

In Appendix A we reduce an integral similar to the integral

in equation (4.23). Following the procedure here that is used in

Appendix B we find:

H 4. 4) =.91 k 2 (sect) p 5/3 fdhC 2(h){l + (zh) 5/3

0

- (1/2) [1 + 2hz cosm + (zh)
2]5/6

- (1/2.) [1 - 2hz cosm + (zh) 2]5/6) (4.24)

where: s is the zenith angle;

z = (esec*)/p; (4.25)

h is the vertical distance (i.e., altitude) above the ground

transmitter, and;

is the angle between P and a.
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For propagation paths originating at the same point in the

aperture plane, (i.e., paths 1 and 2 in figure 4-1a) the first

few meters of the paths will be spaced closer than the inner scale.

For an angle of 50 prad the paths will be within 1 mm for 20 meters.

Since this is a very small portion of the total path, the results

should still be highly accurate. We note that for separations less

than the inner scale the structure function is known to be

2 5/3
proportional to p , thus the use of the p assumption over

estimates the strength of turbulence6 . At the top of the turbulent

atmosphere the separation between the paths has increased by yZ

where Z is the top of the turbulent atmosphere (-20km) and y is the

angle between propagation paths. It is believed that the outer

scale, L 0 , is on the order of 100 m at the top of the atmosphere 2 3

Thus:

y Z << 100 m (4.26)

Using Z = 20km in equation (4.26) gives:

y<< 5 mrad (4.27)

Thus the maximum separation in angle between any element of the

observed data set {gi(D)) where:

gi( = = *('i) - *)(2,;1)  (4.28)

and g( , 4 ), the quantity to be estimated, must be much less than

5 mrad.
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Equation (4.24) is the basic result of this section. It

determines the anisoplanatic error in terms of the propagation

path. In general, the integral must be evaluated using numerical

techniques for a particular C (h) profile. We will evaluate

equation (4.24) in Chapter 5.

4.3 Reduction of the Anisoplanatic Error

We wish to reduce the anisoplanatic error given by H. We

pause briefly to recapitulate that our knowledge of the additive

phase noise is limited. What we know about the process is its

structure function, equation (4.6), its hyperstructure function,

equation (4.21), and its spatial-angular structure function,

equation (4.24). These equations are all developed based on the

assumption that the turbulence is Kolmogorov. Thus, for these

equations to be valid the separation between the propagation paths

in figure 4-1 must be within the inertial sub-range as defined by

equation (4.5). While we don't know exactly what 10 and LO are,

we do know that in the aperture plane 10 is on the order of a

millimeter and L is on the order of the height above 
ground23

For our case of interest the minimum p in the aperture plane will

be the separation between actuators in the wavefront corrector.

24
This separation is on the order of ro 0, which is approximately O.1m.

The maximum separation in the aperture plane is determined by

the diameter of the transmitting aperture, therefore, the transmitting

aperture must be higher above ground than its diameter, which is

almost always the case.

43



Finally, the last assumption that we must make is the so
25

called Taylor's hypothesis, also called the frozen flow 
theory

This theory assumes that in the time scales of interest the elements

of turbulence remain fixed in shape (i.e., "frozen"). Time

variations in the turbulence induced aberrations are assumed to be

caused by the wind transporting the "frozen" turbulence pattern

through the propagation path.

The ambient winds along a propagation path from ground to space

have varying speeds and directions as a function of altitude, thus

for a system with a fixed propagation path the turbulence pattern

would be moving in a random fashion and no prediction would be

possible. For a near earth satellite, however, the slew rate of

the line of sight (i.e., p) will cause the propagation path to cut

through the atmosphere, thus, producing a pseudo-wind. If the speed

of the pseudo-wind predominates ove the natural winds at all

altitudes, then the turbulence pattern at each altitude will appear

to move at the same angular velocity. For a satellite at an altitude

of 200 km the slew rate of the line of sight is approximately 0.039

rad/sec near zenith. The tangential velocity at altitude h is thus:

v = (0.039) h m/sec (4.29)

26
In the lower altitudes, wind speeds are usually under 8 m/sec

Thus for h > 200 m the pseudo-wind will predominate over the ambient

winds. The maximum wind speed, approximately 100 m/sec, usually

occurs at about 12 km26 . At 12 km, the pseudo-wind speed is

468 m/sec, thus the pseudo-wind easily predominates at the higher

altitudes. Thus, there is a direct relationship between time and

the angle moved at each height of turbulence, for low earth orbiting
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satellites. This allows us to translate an observation over a

certain time interval to an observation over a corresponding angle,

and thus, allows use of equation (4.21) in equation (3.23).

Therefore, the optimum linear estimate for the point ahead angle,

, is given by:

i -1--- b--

(p,+) - 'a-g (4.30)

where: all angles are coplanar, and;

a is determined by solving:
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and where: (*+e-*,) << 5 mrad, for all 1 (4.32)

according to equation (4.27).

Equations (4.30), (4.31), and (4.32) are the basic result of this

section. In the next chapter we will evaluate the anisoplanatic error

for a typical case and determine how much this error can be reduced

through utilization of the optimum estimate. In an operating adaptive

optical system the data necessary to determine the optimum estimate

(i.e., the F, s) would be available. For an analytical evaluation

of the performance, we will calculate the F 0's using a model turbulent

atmosphere.
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V. EVALUATION OF THE PERFORMANCE OF THE OPTIMUM ESTIMATOR

In this chapter we will obtain numerical results to determine

how well the optimum estimator performs. First we evaluate the error

without the estimate and then the error with the estimate.

5.1 Magnitude of the Anisoplanatic Error

The anisoplanatic error is given by equation (4.24). To evaluate

2
the integral a profile of turbulence, i.e., Cn as a function of h,

must be selected. The most extensive measurements of the strength

of turbulence as a function of altitude have been made at the ARPA

2Maui Optical Station. The model of Cn versus h derived from those

measurements is shown in figure 5-1,27. This model will be used to

evaluate the performance of the optimum estimator. Once we know what

2.
to use for Cn in equation (4.24) we can perform a numerical integration.n

This numerical integration was accomplished using a computer program

28
adapted from Fried . Table 5-1 lists the value of the integral, Il.

as a function of the parameter z and the angle a.

For a typical case of p = 1 m; = 0; a = 0; and a point ahead

angle, = 50 urad; using table 5-1 and equation (4.24) we see that:
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VALUES OF INTEGRAL Ii(zc)

ANGLE c

z 0.0 45.0 60.0 75.0

1.00e+O0 5.798e-13 5.714e-13 5.672e-13 5.641e-13

7.94e-01 5.771e-13 5.681e-13 5.635e-13 5.602e-13

6.31e-O1 5.742e-13 5.644e-13 5.596e-13 5.560e-13

5.0le-O1 5.71le-13 5.605e-13 5.553e-13 5.514e-13

3.98e-01 5.677e-13 5.563e-13 5.506e-13 5.465e-13

3.16e-O1 5.641e-13 5.518e-13 5.456e-13 5.411e-13

2.51e-O1 5.602e-13 5.469e-13 5.402e-13 5.354e-13

2.00e-01 5.559e-13 5.416e-13 5.344e-13 5.291e-13

1.58e-01 5.513e-13 5.358e-13 5.281e-13 5.224e-13

1.26e-01 5.434e-13 5.297e-13 5.213e-13 5.152e-13

1.00e-01 5.4ie-13 5.230e-13 5.140e-13 5.073e-13

7.94e-02 5.353e-13 5.158e-13 5.060e-13 4.989e-13

6.31e-02 5.291e-13 5.080e-13 4.975e-13 4.898e-13

5.Ole-02 5.223e-13 4.996e-13 4.882e-13 4.799e-13

3.98e-02 5.'.,le-13 4. 905e-13 4.782e-13 4.693e-13

3.16e-02 5.u72e-13 4.807e-13 4.675e-13 4.578e-13

2.51e-02 4.988e-13 4.701e-13 4.558e-13 4.454e-13

2.00e-02 4.896e-13 4.587e-13 4.433e-13 4.320e-13

1.58e-02 4.797e-13 4.463e-13 4.297e-13 4.176e-13

1.26e-02 4.690e-13 4.329e-13 4.150e-13 4.020e-13

1.OOe-02 4.575e-13 4.185e-13 3.992e-13 3.853e-13

7.94e-03 4.450e-13 4.028e-13 3.822e-13 3.673e-13

6.31e-03 4.314e-13 3.SSe-13 3.638e-13 3.480e-13

5.Ole-03 4.166e-13 3.673e-13 3.439e-13 3.273e-13

3.98e-03 4,005e-13 3.471e-13 3.227e-13 3.054e-13

3.16e-03 3.826e-13 3.250e'13 2.999e-13 2.824e-13

2.51e-03 3.625e-13 3.010e-13 2.758e-13 2.548e-13

2.00e-03 3.383e-13 2.753e-13 2.507e-13 2.339e-13

1.58e-a3 3.048e-13 2.485e-13 2.252e-13 2.092e-13

1.26e-03 2.730e-13 2.214e-13 1.997e-13 1.848e-13

1.00e-03 2.441e-13 1.948e-13 1.747e-13 1.612e-13

7.94e-04 2.171e-13 1.688e-13 1.507e-13 1.386e-13

6.31e-04 1.879e-13 1.437e-13 1.280e-13 1.176e-13

5.Ole-04 1.547e-13 1.200e-13 1.070e-13 9.830e-14

3.98e-04 1.258e-13 9.854e-14 8.809e-14 8.106e-14

3.16e-04 1.002e-13 7.970e-14 7.153e-14 6.598e-14

2.51e-04 7.901e-14 6.368e-14 5.739e-14 5.310e-14

2.00e-04 6.184e-14 5.038e-14 4.558e-14 4.229e-14

1.58e-04 4.819e-14 3.954e-14 3.588e-14 3.336e-14

1.26e-04 3.746e-14 3.081e-14 2.802e-14 2.609e-14

TABLE 5-1

50

--



z 0.0 45.0 60.0 75.0

1.00e-04 2.904e-14 2.383e-14 2.169e-14 2.023e-14
7.94e-05 2.235e-14 1.827e-14 1.665e-14 1.555e-14
6.31e-05 1.697e-14 1.385e-14 1.265e-14 1.184e-14
5.Ole-05 1.259e-.14 1.038e-14 9.512e-15 8.922e-15
3.98e-05 9.112e-15 7.673e-15 7.072e-15 6.658e-15
3.16e-05 6.520e-15 5.607e-15 5.202e-15 4.920e-15
2.51e-05 4.632e-15 4.057e-15 3.791e-15 3.603e-15
2.00e-05 3.274e-15 2.912e-15 2.739e-15 2.616e-15
1.58e-05 2.304e-15 2.076e-15 1.966e-15 1.886e-15
1 .26e-05 1 .616e-15 1 .472e-15 1 .402e-15 1 .351e-15
1.00e-05 1.130e-15 1.039e-15 9.947e-16 9.622e-16
7.94e-06 7.882e-16 7.310e-16 7.027e-16 6.821e-16
6.31e-06 5.485e-16 5.125e-16 4.945e-16 4.815e-16
5.Ole-06 3.809e-16 3.582e-16 3.469e-16 3.386e-16
3.98e-06 2.641e-1-6 2.498e-16 2.426e-16 2.374e-16
3.16e-06 1.828e-16 1.738e-16 1.693e-16 1.660e-16
2.5le-06 1 .264e-16 1 .207e-16 1 .178e-16 1 .157e-16
2.00e-06 8.725e-17 8.365e-17 8.185e-17 8.053e-17
1.58e-06 6.016e-17 5.789e-17 5.676e-17 5.593e-17
1.26e-06 4.145e-17 4.O0le-17 3.930e-17 3.877e-17
1.00e-06 2.853e-17 2.762e-17 2.717e-17 2.684e-17
7.94e-07 1.962e-17 1.905e-17 1.876e-17 1.855e.-17
6.3le-07 1.348e-17 1.312e-17 1.294e-17 1.28le-17
5.01e-07 9.256e-18 9.029e-18 8.915e-18 8.832e-18
3.98e-07 6.352e-18 6.208e-18 6.137e-18 6.084e-18
3.16e-07 4.356e-18 4.266e-18 4.2 le-18 4.188e-18
2.51e-07 2.986e-18 2.929e-18 2.900e-18 2.880e-18
2.00e-07 2.046e-18 2.010e-18 1.992e-18 1.979e-18
1 .58e-07 1 .401e-18 1 .378e-18 1 .367e-18 1 .359e-18
1.26e-07 9.591e-19 9.448e-19 9.376e-19 9.324e-19
1.00e-07 6.563e-19 6.473e-19 6.428e-19 6.395e-19
7.94e-08 4.490e-19 4.433e-19 4.404e-19 4.383e-19
6.3le-08 3.070e-19 3.034e-19 3.016e-19 3.003e-19
5.Ole-08 2.099e-19 2.076e-19 2.065e-19 2.057e-19
3.98e-08 1.435e-19 1.420e-19 1.413e-19 1.408e-19
3.16e-08 9.803e-20 9.712e-20 9.667e-20 9.634e-20
2.51e-08 6.697e-20 6.640e-20 6.611e-20 6.590e-20
2.00e-08 4.574e-20 4.538e-20 4.520e-20 4.507e-20
1.58e.-08 3.123e-20 3.10le-20 3.089e-20 3.O8le-20
1.26e-08 2.133e-20 2.118e-20 2.111e-20 2.106e-20

TABLE 5-1 (CONTINUED))
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z 0.0 .45.0 60.0 75.0

1.00e-08 1.456e-20 1.447e-20 1.442e-20 1.439e-20
7.94e-09 9.936e-21 9.879e-21 9.85le-21 9.830e-21
6.31 e-09 6.781 e-21 6 .745e-21 6 .727e-21 6.71 4e-21
5.01 e-09 4.627 a-21 4.604e-21 4.593e-21 4.585e-21
3.98e-09 3.157e-21 3.143e-21 3.135e-21 3.130e-21
3.16e-09 2.154e-21 2.145e-21 2.140e-21 2.137e-21
2.51e-09 1 .469e-21 1 .463e-21 1 .46le-21 1 .458e-21
2.00e-09 1.002e-21 9.984e-22 9.966e-22 9.953e-22
1 .58e-09 6.834e-22 6.81le-22 6.800e-22 6.792e-22
1.26e-09 4.661e-22 4.646e-.22 4.639e-22 4.634e-22
1.00e-09 3.178e-22 3.169e-22 3.165e-22 3.161e-22
7.94e-10 2.167e-22 2.161.e-22 2.158e-22 2.156e-22
6.31 e-10 1 .478e-22 1 .474e-22 1 .472e-22 1 .471e-22
5.Ole-10 1 . 00"l.e-22 1 .005e-22 1 .004e-22 1 .003e-22
3.98e-10 6.86de-23 6.853e-23 6.846e-23 6.841e-23
3.16e-10 4.682e-23 4.673e-23 4.668e-23 4.665e-23
2.5le-10 3.191e-23 3.186e-23 3.183e-23 3.181e-23
2.00e-10 2.175e-23 2.172e-23 2.170e-23 2.169e-23
1.58e-10 1.483e-23 1.481e-23 1.479e-23 1.479e-23
1.26e-10 1.Olle-23 1.009e-23 1.009e-23 1.008e-23
1.00e-10 6.889e-24 6.880e-24 6.875e-24 6.875e-24

TABLE 5-1 (CONTINUED)

52



H (,50urad) - (3.664x10"14) k2  rad 2  (5.1)

Using A =,55x]06m in equation (5.1) gives:

H (1,50rad) - 4.78 rad 2  (5.2)

This is obviously a significant error. It corresponds to an ms error

of approximately .35X which is about 3.5 times greater than the total

wavefront error typically budgeted for all error sources in an optical

system. It is this unacceptably large anisoplanatic phase error which

generates the requirement for the separation between the reference

beacon and the receiver.

5.2 Reduction of the Anisoplanatic Error Through Use of the Optimum

Linear Estimate

Before evaluating the error in the estimate we must stop to

realize that equations (4.30) and (4.31) only provide the optimum

estimate for the selected observed data set {gi(p)). The equations

do not tell us how to select the elements of the set. We will thus

evaluate the performance of the estimation procedure for different

numbers of elements in the set and for different angular spacings.

We will compare the error for each of the optimum estimates to select

which elements should be chosen for inclusion in {gi( )l.

First we use equation (4.31) to find - for each {gi(')), then we

find the mean sqdare error using:

<e2> = <[(,+) > g(;,2>)]2> (5.3)
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Before we can solve equation (4.31) we must evaluate the F 's.

In appendix A we show that:

F,( ) (2.1/2 k2 5/3(
F (,~) (2.91/2) k2 P (sec*) [212 - Y (5.4)

where: 1 is the integral in equation (4.24); and

2 f 2C(h)dh (5.5)

0

To determine the performance of the estimation procedure as a

function of the look back angle, eL9 where:

e L = n(i- i+l) (5.6)

we choose n = 2, p = 1 m, = 0, and let:

0.05 < (eL/e) < 1 (5.7)

for values of 8 between 5 and 50 Orad. In figure 5-2 we plot the

reduction in mean square error achieved by the estimate as a function

of the ratio of eL to e. From figure 5-2 we see that the performance

of the estimate is not a strong function of this ratio.

In figure 5-3 we plot the maximum reduction in mean square error,

for n = 2, for each point ahead angle of figure 5-2. The estimate is

seen to give reasonable performance (i.e., 20% improvement) for point

ahead angles less that 8 prad, while providing very marginal

performance for a point ahead angle of 50 prad.
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To determine how the performance of the estimate varies with n

we duplicate the calculations made for figure 5-2 except we let n - 3.

The results of these calculations are shown in figure 5-4. Comparing

figures 5-2 and 5-4 we see that little improvement is gained by

increasing the number of data points in the estimate from two to three.

The performance of the estimate for an n of four was calculated for

three cases. Also performance of a single point estimate, i.e., n = 1

was calculated. The mean square error for all cases is given in

table 5-2. As can be seen from this table the single point estimate

provides no improvement.

Figure 5-5 shows the relationship betweer, the reduction in mean

square error and the number of data points in the estimate. Clearly

there is no value in using an n of four, and only very slight gain

in performance in going from an n of two to an n of three.
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TABLE 5-2

MEAN SQUARE ERROR IN RAD 2 AT .5

POINT AHEAD ANGLE IN P.RAD 1

n 5 10 20 32 50

0 0.145 0.429 1.243 2.476 4.781

1 0.145 0.429 1.242 2.470 4.759

2 0.109 0.331 1.007 2.108 4.342

3 0.106 4.303

4 0.107 4.303
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VI CONCLUSIONS

6.1 Discussion of Results

The data in figure 5-5 shows clearly that there is little value

in-using more than two data points in the estimate. We believe that

the basic reason for this is that the linear component of phase

distortion (i.e., wavefront tilt) is the major contributor to the

atmospherically induced wavefront aberrations29 . Therefore, the

major contributor to the anisoplanatic error is the difference in

the tilt of the two wavefronts arriving from different angles. Thus,

once a good estimate is made of the linear portion of the anisoplanatic

error, little is gained by adding estimates of the higher order

aberrations. The data in figures 5-2 and 5-4 show that the performance

of the estimate is not a strong function of the look back angle. We

believe that this is also a result of the fact the phase aberrations

are mostly linear, and that a good estimate of this component can

be made over a wide range of look back angles. One would also expect

that the estimate would provide better results for small point ahead

angles, as shown in figure 5-3, since for small angles there is better

correlation between the measured data and the desired data than there

is for larger angles. We believe that the magniftude of the improvement

shown in figure 5-2 is significant as discussed in the next section.
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6.2 System Implications

To establish a reasonable station keeping specification we

can interpret the point ahead angle in figure 5-2 to be the station

keeping error allowable between the beacon and the desired receiver.

From table 5-2 we see that the mean square wavefront error for a

station keeping error of a 5 urad is .145 rad 2 , at a wavelength

of .5 Wi. This corresponds to an rms wavefront error of .06X, which

is a reasonable budget for the station keeping error, since an

optical system with a .lX rms wavefront error is considered a good

system. Through utilization of the estimation process developed in

this paper the allowable station keeping error can be increased by

approximately 15% while ma'ntaining the same wavefront error.

Although this increase seems small, it is truly significant since it

could extend the lifetime of a system costing 100's of millions of

dollars, for a very nominal investment in signal processing electronics.

Alternatively the weight of the propellant required to maintain the

station keeping could be reduced by 15%. Since almost all space

systems have difficulty meeting the design goals for system weight,

use of the developed estimation procedure could make the difference

between whether or not the desired system weight goals are met.

Different systems may require varying station keeping requirements.

In general, the more stringent the station keeping specification, the

more the benefit from the estimation procedure developed herein.
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It is important to point out that the data needed to obtain this

optimum linear estimate, i.e., the F 's in equation (4.31), are already

available in current adaptive optical systems. No a priori knowledge

of the turbulence profile, or any other atmospheric charcteristics,

is required.

6.3 Recommendations for Future Work

It is hoped that the results of this work will stimulate others

to investigate the anisoplanatic problem. The use of techniques

30developed for acoustic imaging could possibly be applied to the

anisoplanatic problem. We also believe that the developed estimation

procedures could be usefully applied to many real world problems where

the correlation function is not well behaved.
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APPENDIX A

SIMPLIFICATION OF THE HYPERSTRUCTURE FUNCTION

To solve equation (4.31) we need to evaluate F pj)

and F 4(Z 0,). As noted in section 2.3:

F #( 0*.) - D (p) (A.1)

Since Kolmogorov turbulence is assumed we can use equation (4.6)

to determine D0 (p). The simplification of F (,)is not as straight

forward.

From equation (4.21) we have:

L

F, Z~ 8.16 k2 Ow 2 )-I fdv C2(v) I(v) (A.2)

0

where:

I(V) fe f a- 11/3 {(l-exp(ia"4P)][cos(.aoev)4cos(va 2/k)]} (A.3)

Using:

Cos x [exp(ix) + exp(-ix)1/2

in equation (A.3) gives:

I (v) afd &11a 3 {(l/2)exp(i(a-.-8v)] + (1/2)exp[-i(-G.-ev)] (A.4)

-(l/2)exp~i-0.(-P
4+v)] -. (1/2)exp[i'a.(' -v)

+ [1 -exp(icy.-)] cos[(va )/2]) (A.5)

64

.-



Using 2

fdo f (a) exp(ia) - 2w fda ay f ~ (a oO) (A. 6)

where: J0is the well known Bessel function of the first kind, of

order zero;

in equation (A.5) gives:

I(v) - 2w fdo a-8/3{(1/2) 1 0(aev) + (1/2)J 0(-aev)
0

-(1/2) J 0(a~I (1/2) J 0(0I-ei)

+ [1 - J (ap)][cos(va 2 k)]I (A.7)

Using the law of cosines we get:

1p +v O (2- [ 2pev cose + (ev)] (A.8)

where: a is the angle between p and

Using equation (A.8) in equation (A.7) gives:

-()=2 d 8 /3{J(aev) - (1/2)J [~ 2 
-2pev cosm + e22 ) /2~

0

0 C p2+ 2pev cosa + e 2 2 )1/2]

2J J(ep)][cos(va /k)]) (A.9)

Adding and substracting 1 in equation (A.9) to the quantity in curly

brackets and using 18

ft1 I- 1J0 (t)]dt - {r(Gi-l)/2]){r[ (3-pi)/2])
0

(2-l{r[u~l /2]- 2(A.10)

allows us to evaluate the first three terms of the integral.
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We get:

I(v) -2 {-[r(5/6)][r(1/)](28/
3 )[r(1l/6)] 2 [(oy) 5 / 3

- (1/2) (p2 -Zpev coso + e2v2) 5 / 6

- (1/2) (p 2+2pev cosa + e2V ) 5/ 6 ]

+ fda a-8/ 3 [1 - J o(OP)] cos[(vO2 /k)]) (A.11)

0

Using18:

x[r(x)] - r(x+1) (A.12)

in equation (A.11) gives:

I(v) = 2v{(-6/5) (28/3) [r(1/6)][r(11/6)]
"1 [(ev) 5/ 3

- (1/2) (p2-2pevcos + e 2 v2 )5 / 6

- (1/2) (p2+Zpevcosa + 5/6

+11 (A.13)

where:

I fda 0-8/3[1 - Jo(Op)]cos[(vo2)/k] (A.14)
0

Using equations (4.8) and (A.13) in equation (A.2) gives:
L

F (Pp) " (-2.91/2) k2  fdv Cn(v){(ev) 5 / 3

0

- (1/2) [p2-2pev(cosa) + (ev) 2 5 /6

- (1/2) [p 2+2pev(CoSG) + (ev) 2] 5 / 6)

L
+ (8.16/2w)k2 fdv C2(v)1- (A.15)

0
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Letting 6 0 and using equation (A.1) in equation (A.15) gives:

L L
DOW (2.91/2)p 5/3k 2 fdvC2(v) + (8.16/2ir)k 2 fdvC2(v)v- (A. 16)

0 0

Using equation (4.8) in equation (A.16) gives:

(8.16/2w) f dv C n(v)l' - (2.91/2) p5 '3  nv (A.17)
0 0

Using equation (A.17) in equation (A.15) gives:

F4(.P*,) - (2.91/2)k 2fLv c 2(v)(p5 /3 _-(v /

0

-(1/2) [p 2_2pev(cosa) + 4 )2 /

-(1/2) [p 2+2pev(cosa') +-fev) 2 5/61A.)

Letting: v a h sec*; and (A.19)

z -(asecV,)/p; where (A.20)

a zenith angle

in equation (A.18) gives:

F ) (2.91/2)p 5 /3[sec(*j)] k 2

(2 fc 2 h) dh] - I (zci))1 (A.21)

where:

I (z~c&) = dhC 2(h)fl +(zh) 5/3 _ (1/2) [1-2zh(cosa)

0

+ (zh) 2]5/6 -(1/2) [l+2zh(cosa) +. (zh) 2 5/6 ~ (A.22)

67



Equation (A.21) is the desired end result of this appendix.

In general, equation (A.21) must be evaluated numerically for a

specific turbulence profile of interest. Values for 11, for a

specific profile are given in table 5-1.
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